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Abstract

Metabolomics is the study of metabolites which underpin life. These metabolites can act as
indicators of the physiological state of the human body based on their concentrations and give
insight into potential disease diagnosis, as different diseases can be characterized by the abun-
dance or deficiency of metabolites, such as prostate cancer and acute ischemic stroke. Biological
data, by nature, is messy and noisy, and often requires heavy pre-processing and complex learn-
ing machine learning algorithms to map inputs to outputs using unknown functions. Gaussian
processes (GP) are a form of non-parametric Bayesian machine learning which construct a prior
distribution over the space of functions. GPs can be used for a multitude of different tasks and
are a great tool for modelling unknown functions and noisy data such as biological data.

In this project we look at GP regression as a way to predict metabolite concentrations given
a rate of change from its reaction. This would open up the possibility, in a clinical environment
such as a doctors office, to test patients for a variety of diseases based on the concentration of a
given metabolite. Samadhan et al. have developed a complimentary metal oxide semiconductor
(CMOS) based device to measure concentrations of metabolites in serum, buffer and urine. The
data from this research is used in this project. We first introduce GPs and the relevant mathemat-
ical background. We then develop two algorithms for data pre-processing specific to the dataset:
(1) an algorithm to classify experimental pixels with metabolites from the CMOS-based device;
and (2), an online algorithm to identify a metabolites reaction start over time. Lastly, we cre-
ate GP regression models using the pre-processed data for prediction of metabolite concentration.

Keywords – Gaussian processes, machine learning, regression, prediction, time series, metabolomics, CMOS,
point-of-care detection
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Chapter 1

Introduction

With the ever increasing amount of data gathered and stored, artificial intelligence and machine learning have both
become extremely popular and have seen many ground breaking and novel innovations within the past decade.
While artificial intelligence concerns itself with attempting to recreate human intelligence in computers or robots,
broadly speaking, machine learning is a subset which focuses on giving machines the ability to learn and make
decisions based on statistical models. Machine learning has seen great success in areas such as finance, social
media and science to predict stock prices or learn who is allowed loans, target users with specific adverts, design
molecules, or attempt to discover cures for diseases such as ALS [1]. More than ever, the use of machine learning
to process and learn from biological data is crucial in areas of biology such as medicine and drug discovery due
to the sheer amount of data that is available, produced and researched in these areas. This chapter will give a
short introduction to machine learning and its concepts alongside metabolomics, the study of chemical processes
involving metabolites, and briefly discusses the experimental setup and data used in this project.

1.1 Metabolomics

Metabolites are the small molecules that underpin life and the chemical and biological reactions that occur in
our bodies. A metabolite is the intermediate product of metabolism and is restricted to small molecules, such
as glucose. Metabolism is the process that occurs in our bodies and every biological system. It can be split
into anabolism and catabolism, which use energy to construct molecules from smaller units, and break down said
specific molecules into smaller units which are then oxidized or used as energy, respectively. This is shown in
Figure (1.1.1) which illustrates the breakdown of carbohydrates into its respective metabolites, of which glucose
is one. It is an endless cyclic. Many diseases are accompanied by perturbations to normal levels of metabolites
in our bodies within biofluids [2]. Based on these perturbations we can detect diseases such as recurrent breast
cancer [3], carry out cardiac research [4], profile cancer cells [5] and personalize medicine [6]. As an example, in
urine samples, sarcosine, which is a non-proteinogenic amino acid metabolite, normal levels are around 0.2µM. In
individuals with prostate cancer it can reach elevated levels of ∼ 5µM [7].

Figure 1.1.1: The breakdown of Glycogen resulting in Glucose as an intermediate metabolite [8]

While metabolomics has only recently been applied to drug development and discovery, it was first demon-
strated in 1960s [9]. Central to the use of metabolomics in disease discovery have been technologies that measure
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all small molecules within a given system. A problem, however, is that the technology for measuring such small
molecules is either lacking sensitivity, such as Nuclear Magnetic Resonance (NMR), or lacking the ability to quan-
tify metabolites, such as as Hyphenated Mass Spectrometry (HMS) [2]. Hence, Samadhan B. Patil et al. [2] have
developed a complimentary metal oxide semiconductor device (CMOS), which is a low cost device for sensing
metabolite reactions. Exploiting the ultra-high packing density of CMOS based sensors. An advantage of the
CMOS-based chip surface is that many metabolites can be simultaneously measured and tested, lowering the
overall cost for metabolite measurements. Samadhan et al. [2] and Hu et al. [10] have demonstrated the ability
to measure glucose and cholesterol concentrations, simultaneously, using a CMOS-based device.

Samadhan et al. [2] demonstrate the ability to identify metabolite markers simultaneously in order to detect
diseases which are of utmost importance. For example, Acute Myocardial Infraction (AMI), Acute Ischemic Stroke
(AIS) and prostate cancer. In the article, 4 key metabolites are used: sarcosine, xanthine, choline and cholesterol.
Each of these metabolites has been shown to be implicated in one or more critical diseases such as AMI, AIS, Acute
Renal Failure and prostate cancer. Measurements were carried out on metabolites dissolved in various solvents
including buffer, serum and urine. Assays for these metabolites were then optimized, standardised and quantified
on the CMOS chip surface.

1.1.1 Setup & Data

The CMOS chip is a 3.4mM× 3.6mM chip with an array of 16× 16 sensor pixels with an active area of 1.6mM×
1.6mM. These sensor pixels may also be referred to as “cells”. The CMOS chip contains 4 micro-wells which are
used to protect the active areas and are 600µM ×600µM in size [2]. The four micro-wells have pipettable access.
It is inside these active area micro-wells where reactions take place with the assays, illustrated in Figures (A.1)
and (A.2). Below the micro-wells are photo-diodes which allow for metabolite sensing and measuring the intensity
values. This is the CMOS chip. Figure (1.1.2) shows the measured metabolites averaged over the CMOS chip.

Figure 1.1.2: Response of photodiode sensor array from four micro-wells for simultaneous detec-
tion of four metabolites [2]

Each micro-well was intentionally designed to be an array of size 5 × 5 pixels on the 16 × 16 pixel CMOS
chip [2]. Due to the limits in manufacturing precision, this was not always the case, and the active areas where
reactions were occurring, deviated one row or column from the intended 5×5 pattern. Data from the entire CMOS
chip is recorded and stored in TDMS files. Therefore, in the dataset, pixels which do not contain metabolites, and
their values, are present. From this point onwards, pixels which are not contained within a micro-well, or active
area, will be referred to as barrier pixels, and the others as non-barrier pixels. An important feature of our data
is that only the top two micro-wells were the ones with the metabolites where reactions were happening. These
are our experimental micro-wells. The bottom two micro-wells are control and contain water.

The TDMS files were labelled with the metabolite name, concentration, and whether the experiment was in
buffer, serum or urine. The data within them was represented as 16 columns and 16.T rows, where T is the number
of recorded timesteps. After reshaping the data in numpy, this equated in data arrays of size 16 × 16, as per the
specifications, containing the pixel intensities. Each experiment contained around 5000− 7000 timesteps of data.
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We can render this data at 10Hz to visualize reactions from start to finish.

1.2 Machine Learning & Gaussian Processes

Machine learning is the study that develops statistical models that learn from experience. Machine learning algo-
rithms can be divided into groups, two of the most popular being supervised and unsupervised learning algorithms.
In supervised learning, the data given to the machine learning model is associated with a ground-truth label so
that the algorithm learns from examples to predict the label. Whereas in unsupervised learning, the data is not
so clearly labelled and the machine learning model aims to discover patterns amongst the data, such as clustering
pictures of faces together without having a concept of what a face is.

Biological data is commonly very noisy by nature and large in size, such as DNA data. For this reason it is
often very challenging to learn a function to try and describe this data, as is the case in supervised parametric
machine learning, such as linear regression. Because of the type and amount of data produced in biology and
metabolomics, it is often very hard to find or derive functions that accurately fit this data to learn from. Problems
such as optimizing combinations of genes for transgenics [11] require us to use unknown functions that map inputs
to outputs, f(x) = y. This function is often difficult to evaluate, especially given the data and problem. Gaussian
Processes (GP) however, and more specifically GP regression, can prove very useful in these situations where it is
hard to estimate a function. GP regression is a form of non-parametric Bayesian machine learning that is able to
capture these difficult and complicated relationships within the data by making use of infinite parameters through
Bayesian inference [12].

1.3 Research Objective & Contributions

This project aims to use Gaussian process regression to predict the concentration of a metabolite based on a rate
of change from the metabolites reaction start point. We use data from Samadhan et al. [2] and the CMOS chip
to build our Gaussian process model. Also part of the project is the development of two algorithms for the data
preprocessing which classify experimental pixels and estimate the reaction start point of a given experimental pixel.
These algorithms are jointly used to produce the final dataset used in the training and testing of the Gaussian
process model for prediction of metabolite concentrations.

1.4 Thesis Structure

• In Chapter 2 we begin by discussing linear regression as a starting point for regression in machine learning so
that the move from to Gaussian Process regression is intuitive and easy to follow. As key background, we will
also look at Bayesian regression and inference in weight-space view and function-space view, conditional
probability, univariate and multivariate normal distributions and covariance matrices before looking at
Gaussian Processes.

• Chapter 3 looks at the data gathered by the CMOS chip and the implementation and methodology for
preparing the data for use with the GP regression model. This involves the development of two algorithms
to classify and extract relevant data.

• Chapter 4 evaluates the proposed algorithms and Gaussian process model. We will look at the accuracy of
both algorithms and how well they performed overall as well as the results of the GP regression model and
its accuracy for the training data prepared in previous chapters.

• Finally, in Chapter 5 we discuss future work to improve results as well as drawing conclusions from this
study.
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Chapter 2

Background

The aim of this dissertation is to use Gaussian Process (GP) regression to estimate the concentration of a metabolite
in buffer, serum or urine given a rate of change in the reaction, we will first introduce regression by looking at
linear regression. Then, we will give intuition for Bayesian linear regression and Bayesian inference. We will then
discuss joint, marginal and conditional probability, multivariate normal distributions, and covariance matrices, all
of which are key in understanding GP regression.

2.1 Linear Regression

Regression algorithms are among the most commonly used in machine learning applications. They are parametric
or non-parametric supervised learning algorithms and involve learning a mapping from inputs to continuously
valued outputs, unlike classification which takes an input and maps it to a discrete label, such as classifying a
picture of an animal as either a cat or a dog. An example of a regression problem is predicting the Mens 100m
Olympic Race winning time for 2020 based on previous years’ data. Regression, and more specifically, least squares
regression, was first used and published in the 19th century by Johann Carl-Friedrich Gauss [13] and Adrien-Marie
Legendre [14]. Linear regression is a useful but simple form of statistical learning. Because of its simplicity it is
often times used as a starting point before exploring more complex machine learning techniques.

In regression, we have a training dataset D of n observations, D = {(xi, yi)|i = 1, ..., n}, where xi is some input
data and yi is the corresponding output variable. Given this training dataset D, a regression model estimates a
function y = f(xi, w) in order to make predictions of y for a new data point x∗. Linear regression assumes a linear
relationship between the output y and input x. The one dimensional linear model can be written as

f(xi) = w0 +

D∑
j=1

wjxij , (2.1.1)

where D is the dimensionality of xi. In a one dimensional linear regression our two parameters w0 and wi

define the intercept and the slope on the response of increasing a predictor value, respectively. Linear methods of
regression work well on data that clearly is linear but also on small data or data that has a low signal-to-noise ra-
tio. Linear regression can also be applied to transformations of the inputs, which are called basis-function methods.

Parametric problems rely on the fact that we must first make assumptions about the function f , and in the
case of our linear regression, that f is linear. Because we have made assumptions about f we now only need to
estimate parameters. This can be accomplished by first introducing a loss function to fit our parameters. A loss
function is a method of evaluating the magnitude of error of our model. The most commonly used method for
this in linear regression is called the least squares function or residual sum of squares, eq. (2.1.3). Note that we
use 1

N
as we want the average loss across our whole dataset and argmin to find the best values for our parameters

to minimize our loss function.
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L = argmin
w0,wj

N∑
i=1

(
yi − f(xi)

)2
(2.1.2)

= argmin
w0,wj

N∑
i=1

(
yi − w0 −

D∑
j=1

wjxij
)2

(2.1.3)

For a simple two parameter linear regression function of the form y = w0 +w1xi, we need to differentiate the
loss function in order to find the partial derivatives with respect to w0 and w1 [15]. We also can use least squares
to accurately choose model complexity, because as the model complexity gets higher, we can begin to overfit the
data. As an example, this may occur when using high order polynomial functions.

In non-parametric models, we do not make explicit assumptions about the parametrization of f . Instead, we
make assumptions about the covariance structure in other data. It has the advantage that it can more accurately
fit a greater selection of data as we can capture more subtle aspects of the data and the parameters can be of
infinite dimensions, resulting in more freedom and flexibility within our model. A non-parametric model can
generally be shown as y = m(xi) + εi, i = 1, ..., n where m is an unknown regression function.

2.2 Bayesian Regression & Inference

2.2.1 Joint, Marginal & Conditional Probability

To be able to understand GPs better we must first look at joint, marginal and conditional probability. It is
important to note, we can manipulate among these probabilities to derive others. In a joint probability, we are
told the probability of both yA and yB happening, as the intersection. Joint probabilities are expressed as

p(yA,yB ...yN ). (2.2.1)

The marginal probability is the probability of any single event occurring unconditioned on any other events.
It tells us the probability of event yA happening, such as whether the weather is going to be sunny or rainy on a
particular day. Marginal probability can be represented in two different ways, depending if variables are continuous
(2.2.2) or discrete (2.2.3),

p(yA) =

∫
p(yA,yB)dyB (2.2.2)

p(X = x) =
∑
y

p(X = x, Y = y). (2.2.3)

Lastly, the conditional probability tells us the probability of yB occurring if yA is observed. For example, we
can use it to calculate the probability of rain given the sun is out. Essentially, conditional probability measures
the likelihood of something happening given something else has happened. It is defined as

p(yA|yB) =
p(yA,yB)

p(yB)
(2.2.4)

p(yA|yB) =
p(yA)p(yB |yA)

p(yB)
, (2.2.5)

where p(yA) is our prior and p(yB) > 0 as it is futile to condition on an impossible event [16]. Also, using
conditional probabilities we can obtain Bayes’ theorem, eq. (2.2.5).

2.2.2 Bayesian Regression

Weight-space View - Regression tasks can be prone to noise, uncertainty and overfitting. As an example
for linear regression from this point onwards, in order to try and predict the saturation time for a particular
metabolite in buffer, such as Glucose, we would need to fit a linear model to our data, minimize the loss, find
the correct parameters and then predict our results. During each step problems could arise which would neg-
atively affect our model. The Bayesian model for linear regression aims to solve these problems and provide a
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more intuitive model. The weight-space view for Bayesian linear regression allows for simple implementations and
interpretability [16] but narrow flexibility since if there is no linear relationship the model will output inaccurate
or wrong predictions.

The Bayesian standard linear regression model can be written as as yi = f(xi) + ε(xi) where f is the function
value and ε is some Gaussian distribution with zero mean and variance σ2

n as noise, ε ∼ N (0, σ2
n) [16]. Also, the

models noise assumption gives rise to the likelihood which is the probability density of the observations given the
parameters. We then let ŷ = ŵ0 + ŵ1xn be our prediction for y based on the nth value of x. With standard
linear regression, y was estimated as a single value, but with Bayesian linear regression it will be drawn from a
probability distribution. Inference in the Bayesian linear model is based on the posterior distribution over the
weights. This can be achieved using the standard Bayes’ theorem

posterior =
likelihood× prior

marginal likelihood
, p(w|y,X) =

p(y|w,X)p(w)

p(y|X)
(2.2.6)

where X is a vector of the transpose of elements in xn and p(w) is the prior probability density function of
the parameters. We can capture all information about the parameters by combining the likelihood and prior. The
denominator can be expanded as the marginal likelihood as

p(w|y,X, σ2) =
p(y|w,X, σ2)p(w)∫
p(y|w,X, σ2)p(w)dw

. (2.2.7)

Since we want to make predictions for our regression problem, we will need to take an expectation with respect
to the posterior density of the weights. Therefore, to make a prediction y∗ at a point x∗ we can use equation (2.2.9).
An interesting point about this is that we can also make predictions using probabilities such as our prediction y∗
becomes y∗ < t for example.

p(y∗|x∗,w, σ2) =

∫
p(y∗|x∗,w, σ2)p(w|y,X, σ2)dw (2.2.8)

= N (
1

σ2
n

x>∗ A
−1Xy,x>∗ A

−1x∗), (2.2.9)

where A−1 is a covariance matrix. eq. (2.2.9) can be derived with help by using the posterior in eq. (2.2.6) by
writing only the terms from the likelihood and prior and completing the square [16]

p(w|X,y) ∝ exp(− 1

2σ2
n

(y −X>w)>(y −X>w)) exp(−1

2
w>

∑−1
p w) (2.2.10)

∝ exp(−1

2
(w − w̄)>(

1

σ2
n

XX> +
∑−1

p )(w − w̄)) (2.2.11)

p(w|X,y) ∼ N (w̄ =
1

σ2
n

A−1Xy, A−1), (2.2.12)

where w̄ = σ−2
n (σ−2

n XX> +
∑−1

p )−1Xy and A = σ−2
n XX> +

∑−1
p . An important point to note is that for

any Gaussian posterior, like the one in the model presented for Bayesian linear regression, eq. (2.2.12), the mean
of the posterior is also its mode which is called the maximum a posteriori (MAP) [16].

2.3 Gaussian Process Regression

A Gaussian process (GP) is a stochastic process where the joint of all variables is drawn from a multivariate
normal distribution that can be of infinite dimensions. Gaussian processes are a form of nonparametric Bayesian
machine learning in which we construct a prior distribution over functions, rather than over parameters. While
most machine learning algorithms (excluding neural networks) can be generally split up into two areas regression
and classification, GPs have been developed extensively to be able to handle both areas along with unsupervised
learning [17], reinforcement learning [18] and even deep models; DGPs [19]. One of the main advantages for using
GPs for machine learning is that GPs provide a nice way of expressing the prior function when it is hard to make
assumptions about a function for the data.
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Figure 2.3.1: Graphical GP [20]

A non-mathematical and intuitive description of Gaussian processes can be described as playing a game of
cards with two identical decks, where each card has a function, such as f(x) = x2. A card is chosen and the value
of the function on the card, at a particular point, is given. For example, the y value of an x value at point 3.
Based on the answer, all cards in the other deck that do not match it, are thrown away. This can be thought of
as the prior belief of functions. A new selection of cards, now the posterior belief of functions is presented. There
are now two possible steps to take. Either, more questions are asked in order to update a confidence of what
the function is, or a guess is made based on current data and beliefs. These final steps can be repeated infinitely
many times. We can also describe a GP regression model graphically with Figure (2.3.1). Each input is mapped
to an observation through a Gaussian field, represented as the thick horizontal line in the center. Each of these
observations is conditionally independent of all other nodes given the corresponding latent variable, fi [16].

2.3.1 Normal Distributions

Before looking at the multivariate normal distribution, we will first go over the univariate normal distribution, or
simply the normal distribution, so that we have the background to move forward as they are a crucial area in
understanding the intuition behind GPs. By definition, a normal, or Gaussian, distribution is a distribution in-
volving a one dimensional random variable. They are used because of their many features, such as being infinitely
differentiable, that make them easy to work with and highly useful, such as only having two parameters; the mean
and variance.

In a normal distribution, the probability density function (PDF) is defined as

p(x) =
1√
2πσ

exp

{
− (x− µ)2

2σ2

}
, (2.3.1)

where p(x) is the probability of x being generated or drawn from the distribution, µ is the mean, σ2 is the
variance and σ is the standard deviation. Changing the value of either µ and σ2 we can adjust the position and
height and length of the distribution Bell curve. In the Figure (2.3.2a), we can see that µ is always at the mode of
the distribution, or in other words, it defines the mode. The distribution can also be described as “x is a random
variable that has a normal, or Gaussian, distribution, with mean µ and variance σ2, x ∼ N (µ, σ2).

(a) Univariate normal distribu-
tion

(b) Multivariate normal distri-
bution

(c) Unnormalized Gaussian
RBF

Figure 2.3.2: Normal distributions, (a, b) and covariance function (c)

The main difference between a multivariate distribution and a univariate one is that a multivariate distribution
works with random variables of multiple dimensions and has a covariance matrix. A multivariate normal distribu-
tion describes the probabilities of a continuous multidimensional random variable. With regards to multivariate
Gaussians, these random variables follow a normal distribution, where each random variable in the distribution has
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its own mean and variance. First, we have a vector of n random variables, x = (x1, ..., xn), that has a multivariate
normal distribution, where each xn ∼ N (0, 1). We can denote the mean of xn by µn and let µ = (µ1, ..., µn)
be the n × 1 vector of means. Furthermore,

∑∑∑
is an n × n matrix of covariances,

∑∑∑
= Cov(xi,xj). Then, the

multivariate normal distribution has probability density function (PDF)

f(x) =
1√

(2π)2|
∑∑∑
|

exp

(
−1

2
(x− µ)>

−1∑∑∑
(x− µ)

)
, (2.3.2)

Notice we can also derive this PDF, informally, in a few steps from the univariate PDF [21]. In the context
of GP regression, given a multivariate normal variable y, we are interested in the conditional distribution of y2
given y1, which come from splitting up y into the two respective sub-vectors. Figure (2.3.2b) shows sample points

from a multivariate normal distribution with µ =

[
0
0

]
and

∑∑∑
=

[
1 3/5

3/5 2

]
.

y =

(
y1
y2

)
∼ N

((
µ1

µ2

)
,

(∑∑∑
11

∑∑∑
12∑∑∑

21

∑∑∑
22

))
(2.3.3)

Covariance Matrices - Covariance matrices, covariance functions or otherwise known as kernels, are
crucial in Gaussian processes. A covariance function k is a function that maps pairs of inputs, x and x∗, into
real values. The covariance function is very adaptable as its inputs can be multidimensional. In the context of
Gaussian processes, these covariance functions correspond to the similarity of the inputs. We can construct the
kernel k(x,x′) as kij = k(xi, xj). There are many different kernel functions, but the most commonly used, and
the one we shall use is the RBF kernel function, Figure (2.3.2c), otherwise known as the Radial Basis Function
or squared exponential kernel, which is defined as either eq. (2.3.3) for a kernel with one-dimensional inputs, or
eq. (2.3.4) for a kernel with multi-dimensional inputs. Note that we have two hyper-parameters present in the
covariance function, where σ2

f is the variance and l is the length of the function, both of which can be varied to
increase or reduce the correlation between data points.

k(x,x′) = σ2
f exp

(
− (x− x′)2

2l2

)
(2.3.4)

k(x,x′) = σ2
f exp

(
− 1

2
(x− x′)>M(x− x′)

)
(2.3.5)

2.3.2 Function-space View

In a weight-space view, we describe uncertainty through a probability distribution over the weights. In this section,
we look at the function-space view to deal with uncertainty with respect to functions. It is an different method of
reaching the “same” results by instead considering inference directly in the function space. For this, we use a GP
to describe this distribution over functions [16]. As a GP is specified by its mean and covariance, we can define
this mean m(x) and covariance k(x,x′) of a real process f(x) as equations (2.3.6) and (2.3.7) with a GP as (2.3.8)

m(x) = E[f(x)], (2.3.6)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.3.7)

f(x) ∼ GP(m(x), k(x,x′)). (2.3.8)

Recall that a Gaussian process is a stochastic process with a collection of random variables, any finite number
of which have a joint normal distribution. Given these random variables implies a marginalization property which
specifies that upon examination of a larger set of variables does not change the distribution of the smaller set, as
(y1, y2) ∼ N (µ,

∑
), then it must also specify y1 ∼ N (µ1,

∑
11), where

∑
11 is the relevant sub-matrix of

∑
. We

can demonstrate a GP using the Bayesian linear regression model presented earlier f(x) = φ(x)>w with prior
w ∼ N (0,

∑
p), where our mean is 0 and φ(x) is a function which maps a D-dimensional input vector x into an

N dimensional feature space, with

E[f(x)] = φ(x)>E[w] = 0, (2.3.9)

E[f(x)f(x′)] = φ(x)>E[ww>]φ(x′) = φ(x)>
∑
p

φ(x′) (2.3.10)

10



Note that in this dissertation we will be working with the squared exponential covariance function. Hence
we have cov(f(xp), f(xq)) = k(xp,xq) = exp

(
− 1

2
|xp − xq|2

)
. In order to draw samples from the distribution

of functions evaluated at any number of points we consider a test number of n input points, X∗, and write out
the corresponding covariance matrix elementwise [16]. We can now generate a random Gaussian vector with this
covariance matrix, f∗ ∼ N (0,K(X∗,X∗)), and plot the outputs as a function of the inputs.

2.3.3 Regression & Prediction

We now continue our understanding of Gaussian process regression by bringing together the material from previous
sections and describing how our standard GP function, eq. (2.3.8), is used in regression and prediction for noisy
observations. We have a dataset, D, containing n training points, D = {(xi, fi)|i = 1, ..., n}. In a realistic
environment, we most likely will not have access to function values nor noise-free observations, thus we must
compensate for this in the form of y = f(x)+ε. Our covariance matrix then becomes cov(yp, yq) = k(xp,xq)+σ2

nδpq
or cov(y) = K(X,X) + σ2

nI where I is a diagonal matrix. The joint distribution of the training points outputs,
y, and the test outputs, f∗, according to the prior and noise, is

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
, (2.3.11)

where X and X∗ denote training and test points respectively. Note that we can also think of K(X,X∗) as the
transpose of K(X∗,X). To get the posterior distribution over functions, we need to restrict this joint distribution
to contain only functions which agree with observed data points [16]. We can arrive at a predictive distribution
equation by conditioning the joint Gaussian prior distribution on the observations for our noisy GP regression
model, resulting in

p(f∗|X,y,X∗) ∼ N (f̄∗, cov(f∗)) where (2.3.12)

f̄∗ , E[f∗||X,y,X∗] = K(X∗,X)[K(X,X) + σ2
nI]−1y, (2.3.13)

cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2
nI]−1K(X,X∗). (2.3.14)

The results are key equations for GP regression, where f̄∗ is the mean and cov(f∗) is the covariance function.
Simpler notation can be used to describe the predictive distribution, where expressions involving the kernel can
be made more compact, giving us eqs. (2.3.17) and (2.3.18). In the case that there is only one test point x∗,
we write k(x∗) = k∗ which denotes the vector of covariances between the test point and the given n training
points. Therefore, when we take the noise into consideration, we can finally write the predictive distribution as
p(f∗|X,y,X∗) ∼ N (f̄∗, cov(f∗) + σ2

nI). Note that we use the Cholesky decomposition instead of directly inverting
the matrix, (K + σ2

nI), as it is more numerically stable and faster [16].

f̄∗ = k>∗ (K + σ2
nI)−1y (2.3.15)

V[f∗] = k(x∗,x∗)− k>∗ (K + σ2
nI)−1k∗. (2.3.16)

2.3.4 Model Selection & Optimization

Learning Hyper-Parameters - As Gaussian processes are fully probabilistic, it gives us the ability and
advantage to select the covariance hyper-parameters directly from the training data. A hyper-parameter is a free
parameter from a covariance function. In the case of this dissertation, we will be using the squared-exponential
function as our covariance function. This covariance function has three hyper-parameters; length-scale l, signal
variance σ2

f and noise-variance σ2
n. The hyper-parameters grow in size based on our data and dimensionality of

the covariance matrix. For example, the length-scale has a parameter along each dimension of the full covariance
matrix. The values of our hyper-parameters can greatly affect the strength of our GP model as the value of
predictions can be greatly affected based on how the hyper-parameters are tuned.

In a Bayesian setting, we would like to learn these hyper-parameters by placing a prior and computing a
posterior given the training data. This however is not analytically tractable and good approximations are not
easily achieved [16]. Therefore, a general technique for learning hyper-parameters is to compute the integrals over
the parameters, for which we can use the marginal likelihood - the integral of the likelihood times the prior, where
the prior is Gaussian, f |X ∼ N (0,K) or eq. (2.3.20), and the likelihood is a factorized Gaussian y|f ∼ N (f , σ2

nI)
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[16]. The hyper-parameters are then set by maximizing the marginal likelihood using the partial derivatives of the
marginal likelihood w.r.t. the hyper-parameters, eq. (2.3.22).

logp(f |X) = −1

2
f>K−1f − 1

2
log|K| − n

2
log2π (2.3.17)

logp(y|X) = −1

2
y>(K + σ2

nI)−1y − 1

2
log|K + σ2

nI| −
n

2
log2π (2.3.18)

∂

∂θj
logp(y|X,θ) =

1

2
y>K−1 ∂K

∂θj
K−1y − 1

2
tr(K−1 ∂K

∂θj
) (2.3.19)

=
1

2
tr
(

(αα> −K−1)
∂K

∂θj

)
, where α = K−1y (2.3.20)

In this project we use the Limited-memory BFGS algorithm (L-BFGS) [24] for hyper-parameter optimization.
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Chapter 3

Implementation & Methodology

This chapter details the algorithms developed in this project. In order to produce a training dataset for our
GP model, we must develop a pipeline of algorithms to clean the dataset and extract only what is necessary.
For this, two algorithms are devised which extract active non-barrier experimental pixels and find their reaction
start. We will look in depth at the algorithms presented and their implementations as they are necessary key
stages in preparing the final datasets for the Gaussian process model. Lastly, the GP model, implementation, and
optimization will be discussed.

3.1 Extracting Non-Barrier Pixels

Given the data described in Chapter 1, we must first remove non-experimental data, ie. data from barrier pixels,
dead pixels, and control micro-wells. To start with, it is crucial to first remove all pixels which are not contained
in any of the four micro-wells, as otherwise they will interfere with the data and will provide the GP with incor-
rect data. This stage is done in two steps. First, we classify dead, barrier and non-barrier pixels. Second, we
classify pixels in the control and experimental micro-wells. Dead pixels are defined as pixels which are broken and
non-reactive.

We develop a heuristic for classifying pixels is to visualize all the data and try to identify patterns within it.
Figure (3.1.1) shows the first column of pixels from the CMOS chip plotted with their intensity values over time.
This includes pixel coordinates from (0, 0) to (0, 15). It is simple to point out the pixels that are experimental
from this plot as they have a constant intensity that lasts approximately 1500 timesteps before noise is introduced
and the reaction starts. The initial huge spikes of noise are a result of the metabolite being added to either the
serum, buffer or urine. After the reaction start, there is an exponential growth in pixel intensity before the reaction
saturates. All other pixels plotted in Figure (3.1.1) are completely linear and remain that way at intensity values
of 160 and lower or 210 and higher. The lower value pixels are the pixels in the control micro-wells and the higher
value pixels are barrier pixels. From this, we say that any pixels that grow over time and have values between
160− 210 are most likely going to be pixels in experimental micro-wells.

Figure (3.1.2) shows a histogram for a 5.6mM Glucose test for timestep 0, along with the mean, represented
as the black dotted line, and the normal distribution. Figure (3.1.3) is a visualization at timestep 0 of the CMOS
chip and all four micro-wells including the barrier section. The bottom two micro-wells are the control micro-wells
which contain water while the top two contain the Glucose in buffer, serum or urine. A completely black pixel is
also visible in the bottom left control micro-well - this indicates it is dead, or broken. Also visible is the approxi-
mate 5× 5 pattern each micro-well has. Based on the data and the visualizations, a simple rule was developed to
determine which pixels are barrier pixels and non-barrier pixels.

Based on the figures and the data, we can see that any values that are less than the mean, beside the dead
pixel at intensity < 100, are non-barrier pixels. Therefore a simple extraction rule for the non-barrier pixels is
to classify non-barrier pixels as those which are less than the mean. However, there are still some pixels (∼ 5%)
that are non-barrier but have values slightly greater than the mean which would not be extracted per the rule.
Also, the dead pixel would have been classified as non-barrier. Therefore, to correctly classify these pixels, we can
instead look at pixel intensities whose values are within some range, σ above and below the mean. For this, we
assume that 3 standard deviations is enough of a margin to correctly classify between barrier and non-barrier pixels.

13



Figure 3.1.1: Pixels (0, 0)− (0, 15) plotted over time

Figure 3.1.2: Histogram for Glucose in buffer
at t0 - (x-axis is the pixel intensity value,
y-axis is the concentration)

Figure 3.1.3: CMOS chip with micro-wells for
Glucose in buffer at t0

At any given timestep, there is a 16 × 16 matrix M. The mean, standard deviation and variance across all
256 pixels are calculated. Where µ and σ are the mean and standard deviation of M respectively, and Mij is the
location of a pixel within the matrix. A pixel is identified as non-barrier if it has a value lower than µ + σ2 but
greater than 3 times the standard deviation away from the mean. With reference to Figure (3.1.1), we extract
only the pixels that are under the barrier pixel plots and that are not dead or broken. For added accuracy, each
pixel then has its variance over time compared with some threshold θ to ensure it is a reactive pixel and not a
false positive.

non barrier pixelij = (µ+ σ2 > Mij) ∧ (Mij > µ− 3σ) (3.1.1)
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Algorithm 1: Non-barrier pixel classifier
data: 2D array[16 × 16 × t]
p: pixel n
M: binary array mask of pixels at timestep t = 0̄
non_barrier: array of all non-barrier pixels
θ: variance threshold

for timestep 0 to 1000 do
M[p] ← data[p] ≥ mean(data[p]) - 3std(data[p]) and data[p] < mean(data[p]) or M[p]
for every pixel p in M do

c ← get coordinates of M[p]
end

end
for every pixel coordinate p in c do

if over all timesteps p ≥ θ then
non barrier ← p

end

end

We now have an array of the coordinates of non-barrier pixels. It is necessary to further filter the array so
that only pixel coordinates that are from experimental micro-wells are within it. As previously mentioned in our
dataset, the control micro-wells are always the bottom two. Therefore we can exploit this and simply remove all
pixels of coordinates that are higher than the midway point, in our case, (8, 0).

3.2 Estimating Reaction Start

Now that we are left with an array of the coordinates from a given experiment that contains only non-barrier pix-
els, we need to automatically determine the start of each pixels’ reaction. As stated in the previous section, when
looking at any pixel reaction over time, it starts off relatively constant before a large spike of noise is introduced,
to which the reaction start follows for an exponential growth period over n timesteps before reaching saturation.
This was standard behaviour observed in a large number of pixels tested. In others, there were multiple isolated
spikes, or peaks, before the reaction start peak is reached. There are two possible reasons for peaks of noise
before the reaction start peak:

1. Metabolite being applied to the buffer/serum/urine/etc..., creating a human shadow over the pixel obstruct-
ing the LED above it and registering noisy intensity values for a brief period of time

2. Metabolite being applied to the buffer/serum/urine/etc..., and the natural reaction commencing

Therefore our goal is to within 100 timesteps (10Hz, 100 timesteps equals 10 seconds), identify the start of
a reaction so that all data prior to the reaction start can be excluded from the final data for the GP model. An
algorithm was devised to identify the reaction start based on the standard score, or z-score, through a windowed
moving mean. The standard score in statistics is the number of standard deviations by which the value, or in our
case, pixel intensity, of a point x at tn differs from the moving mean. The algorithm uses 3 main parameters;
a window size which determines how smooth and adaptive the algorithm will be to changes in data; an “effect”
parameter which specifies how much of an effect certain signals and peaks have on the algorithm; and the standard
deviation, or threshold, that controls how many standard deviations from the window a data point needs to be,
to be classified as a peak. If the point x differs by more than some standard deviation σ a peak will be detected.
This is an online algorithm since it only uses past data. We also check the total mean and standard deviation from
the start, timestep 0, to the current point x. With this we have two mean values, a moving one and a continually
updating one, as well as two standard deviation values. The reasoning for combining these two algorithms is to
increase robustness.

When a peak is detected its timestep is recorded as the start of the reaction. If the algorithm finds a new
reaction start, the previous value is discarded and the newer one is labelled as the reaction start. Usually, two
different reaction start timesteps are returned from the algorithm, one from the moving mean and one from the
total mean. The reaction start that is within 100 timesteps from the difference of both values is the final reaction
start value chosen and used for the pixel. An example of the algorithm can be seen in Figure (3.2.1). In Figure
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(3.2.1a) is the plot over time for a specific pixel from an experiment with cholesterol in buffer. Figure (3.2.1b) shows
the end results of the algorithm, with added standard deviation peaks, a mean and identified signals/peaks as
red dots. Lastly, Figure (3.2.1c) shows the output of the algorithm having marked the starting point of the reaction.

(a) Pixel plot over time for
Cholesterol in serum

(b) Pixel plot over time during
peak and start detection

(c) Pixel plot over time and re-
action start

Figure 3.2.1: Reaction start algorithm

3.3 Metabolite Concentration Prediction with Gaussian Process
Regression

In this section we present our GP regression model for predicting metabolite concentration in time series. We use
the theoretical background introduced in Chapter 2 along with the GPy [25] library to create our model. In order
to achieve this, we input into the model. We calculate the rate of change from the reaction start to some time,
ts + d, to use as input. This will make up our final dataset which will consist of a CSV file with pixel coordinates,
experiment file name, concentration of metabolite used in the experiment, and rates of change for varying d.

3.3.1 Rates of Change

Combining the two algorithms presented in the previous chapter results in an array of the coordinates of experi-
mental pixels along with the timestep at which their reaction starts. The last step needed to prepare the dataset
for the GP regression model is to calculate individual rates of change for each correct pixel. Rates of change at 13
different intervals were calculated from the reaction start point, ts. These 13 rates of change were calculated at
ts + d, where d ∈ {10, 20, 30, 40, 50, 75, 100, 125, 150, 200, 250, 300, 500}, using

Rate of change =
y2 − y1
t2 − t1

, (3.3.1)

where y1 was the median historical pixel intensity up until the reaction start point, as the noise-free baseline
intensity, and y2 is the intensity at time t2.

3.3.2 Gaussian Process Regression Model

The Gaussian process regression model was built using the GPy framework [25] developed by the SheffieldML
group. GPy is a free open-source library providing a strong and robust framework for Gaussian processes written
in Python and using numpy for calculations. It is actively developed and used in both academia research and
industry. To date, it is the most complete library for working with Gaussian processes including a variety of
different kernels and optimization algorithms.

Given our preprocessed dataset of metabolite concentration measurements for experimental pixels and their
respective rates of change from the reaction start point, D = {(xi, yi)}, where xi is a vector of rates of change
and yi is a concentration, the task is to now jointly learn and predict the assignment of a concentration given
a new unlabelled feature vector x∗. There are a total of 10 datasets containing 350 − 1000 samples. There is
also one extra dataset that was created by manually filtering falsely included pixels using the non-barrier pixel
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classification algorithm. Each metabolite (cholesterol, choline, sarcosine, xanthine, glucose) has 2 datasets, one
for an experiment in serum and one in buffer.

A GP regression model was created for each of these datasets using Leave-one-out-Cross-Validation (LOOCV)
to train and test. Rather than using LOOCV on individual x and y values, the dataset was split up into folds
based on the file name of the experiment they originate from so as to not train and test on data from the same
experiment. Also, due to the fact that the concentrations of metabolites in experiments are non-negative and
range across orders of magnitude, (mM - µM), we transformed y into the natural log domain, y = np.log(y).

The implemented GP model uses an RBF (squared-exponential) kernel with a starting variance and length-
scale of 1 and 2 respectively. We then optimize the kernel hyper-parameters through the use of the L-BFGS
algorithm and optimize the model for 10 iterations using the log likelihood and the log likelihood gradient. Note
that the initial noise of the model is set to 1 and is optimized alongside the hyper-parameters. It is also possible
to set a prior mean function as this can improve the model predictions in uncertain areas with no data. This was
set dependent on the model so it often varied. This is demonstrated in the code snippet below. Notice that be-
cause we are already in the log domain, we do not need to explicitly specify our mean prior in the log domain again.

...

mf = GPy.core.Mapping(1, 1)

mf.f = lambda x: n # set prior mean as log(n)

mf.update_gradients = lambda a, b: None

...

kernel = GPy.kern.RBF(input_dim = 1, variance = 1, lengthscale = 2) #

↪→ create kernel and optimize hyper -parameters

model = GPy.models.GPRegression(x, y, kernel , mean_function = mf) #

↪→ create GPR model with noise

model.optimize () # optimize model

...

model.predict(x_) # make predictions

...

LOOCV was used to evaluate the model, and so the model was trained repeatedly on n − 1 data where n is
the number of total experimental files where the pixels originate from in the dataset. Once the model was trained,
the testing was done using the remaining data, x∗. Figure (3.3.1) shows an example of some of the data the model
was trained on, along with samples from it drawn, Figure (3.3.2), with the y-axis in log-space.

Figure 3.3.1: Rate of change data at ts + d150
for choline in serum

Figure 3.3.2: 3 samples from data
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Chapter 4

Evaluation & Results

This chapter will look at the results of both algorithms presented in Chapter 3 for extracting non-barrier and
experimental pixels and identifying the reaction start of a pixel, as well as the GP model.

4.1 Pixel Extraction

To quantitatively evaluate the pixel classification accuracy, ground truth labels were provided by manually mark-
ing barrier and non-barrier pixels. The ground truth consisted of an array mask of pixels. The array stores a 1
if the pixel in that position is non-barrier, a 0 if it is a barrier pixel, and “NaN” if the pixel is dead or broken.
This array is referred to as g_truth and was constructed for 10 different experiment datasets. For each timestep,
the algorithm used the extracted coordinates as pixels of value 1, for g_truth, pixels lower than the algorithm as
“NaN” and 0 for all others. The non_barrier array was then compared to g_truth at each timestep to test how
many pixels were correctly identified. Only the non-barrier pixels were reported as this is what we are interested
in. The overall mean accuracy for all 10 experiments was 91.2%. As stated, we exploited the dataset property
that the control micro-wells were in the lower bottom corners of the CMOS chip, and simply remove those pixel
coordinates from the extracted data, and compare it with the g_truth array. The accuracy for this was > 99%.

Figure 4.1.1: Histogram for Glucose in buffer
at t6000

Figure 4.1.2: Pixel intensities for Glucose in
buffer at t6000

An overall mean accuracy of 91.2% was slightly under what was deemed acceptable as it meant there were
still some experiments where 8 − 12 pixels that were extracted were barrier pixels. This would lead to further
problems down in the preprocessing pipeline. Examining the accuracy of each experiment individually after every
1000 timesteps, it was clear that as time went on, the accuracy decreased. This can be seen by comparing the plot
and CMOS chip visualization from Figures (3.1.2) and (3.1.3) against Figures (4.1.1) and (4.1.2). At timestep 0
the mean overall accuracy is approximately 94% − 96%. At timestep 4000 the mean overall accuracy decreased
to 64%. This happens because over time the difference in intensity between barrier and non-barrier pixels was
much harder to distinguish given the mean intensity values, especially as the reaction reaches an end and saturates
completely. Again, this can be seen in Figures (4.1.1) and (4.1.2) where the mean point is at a value similar to that
of the barrier pixels and the intensities between non-barrier experimental and barrier are very similar, respectively.
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In order to resolve the decreasing accuracy of our rule over time, we instead look at only the first 1000
timesteps. During the proposed first 1000 timesteps, our initial rule has an accuracy ranging from 96% − 99%.
We can therefore use the coordinates of those identified non-barrier cells as our final non-barrier pixels, given that
they are classified as non-barrier the majority of the time over the 1000 timesteps. We can also combine all of
the non-barrier identified pixels from the first 1000 timesteps and remove all duplicates, so only unique values are
kept. Given the new restriction on the algorithm and combining it with the removal of the control micro-well
pixels, we can once again test the accuracy using our ground truth arrays. The results of this can be seen in the
confusion matrices below which show the amount of correctly identified non-barrier, experimental pixels across all
10 ground truth experiment arrays.

Ground truth
Positive Negative

Pixel classifier
Positive 417 (TP) 16 (FP)

Negative 36 (FN) 811 (TN)

Ground truth
Positive Negative

Pixel classifier
Positive 0.92 0.02

Negative 0.08 0.98

Note that the total number of pixels presented add to 1280 and not 2560 as half of the data, being the control
and barrier pixels, were automatically removed. From the confusion matrix we can also calculate the precision
and misclassification rate of the algorithm. The precision states how often the algorithm is correctly identifying
non-barrier pixels and can be calculated from TP

TP+FP
= 417

417+16
= 0.96. On the other hand, the misclassification

rate is FP+FN
total

= 16+36
1280

= 0.04. Also worth mentioning is the F1 score of the model which measures the precision
and recall together, 2TP

(2TP+FP+FN)
= 0.94.

It is worth briefly comparing a true positive pixel with a false positive one. From Figure (4.1.3a), we can see
that the start intensity value of the FP pixel is at 208, which is slightly higher than most other pixel intensities
from Figure (4.1.3b), but was most likely chosen due to the fact that there are a few pixels in this dataset that are
true positive and start off also at very high values, Figure (4.1.3c). This could be due to some calibration errors
prior to the experiment start because after ∼ 300 timesteps the intensity value falls back down to a standard of
range of 170± 10. Given that the FP pixel also has this strange starting intensity similar to that of the TP pixel,
which is still lower than other barrier pixels, and will also have some variance over time, this was taken to be a
TP pixel. Note that at the end of the experiment, the FP pixel has an intensity value almost identical to that of
the TP pixels. A quick fix for these type of initial potential calibration errors may be to discard the first 300 -
500 timesteps.

(a) FP pixel (b) CMOS start

(c) TP pixel (d) CMOS end

Figure 4.1.3: TP and FP comparison alongside the other individual pixel cells. The FP pixel (0,
11) is highlighted in red
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4.2 Reaction Start Estimator

A large part of the evaluation for the reaction start estimator was done manually. The reason for this is that
after the entire pre-processing pipeline, a random experiment file was chosen, “serum bufer.csv”, to be manually
evaluated and checked for errors so that a new false positive free dataset, “serum buffer TP.csv”, could be created
so as to compare it with the original dataset after the Gaussian process regression. During this process, a total of
1000 extracted pixels were looked at, along with their plots, reaction start times, and rates of change.

Upon evaluation of each pixel, a time plot similar to Figure (4.2.1a) was presented and its detected start
timestep would be printed out. If the printed reaction start time, also marked in the plot, was ±100 timesteps
from the ground truth, then the a score of true positive, or TP, was given to the pixel. It is worth noting that
the variance of ±100 timesteps was used due to the fact that if a discrete value is given as the ground truth, with
no room for precision errors, it would result in many more false positives, or FPs, in the final dataset. It would
be much harder to obtain the exact ground truth value predicted because small precision errors of even ±1 are
very difficult to correct. An example of this is having a ground truth of 1724 while the algorithm estimates the
reaction start at 1726. While still accurate, a direct comparison would not work. Overall, 4.2% of pixels were FP,
meaning they had their reaction start identified as the prior noise before the reaction start, or too far after the
true reaction had started.

To further evaluate the algorithm, it is interesting to look at a couple of results in more detail. Figure (4.2.1a)
shows a pixel which was correctly classified by the pixel extraction algorithm but had its reaction start point
estimated at the incorrect timestep, while the pixel plot in Figure (4.2.1b) has an accurate estimate point for the
reaction start. We will refer to the “bad” result as a false positive reaction (FP) start. Upon further examination,
its prior noise is identified similar to a pixel with a true positive (TP) reaction start, although the peak at the
reaction start time, was ignored. A pattern that emerged when manually evaluating these results for this dataset,
is that in a large amount of the FP reaction start pixels, within the window of the reaction start, there are
only significant negative peaks and no positive peaks, Figure (4.2.1c). Similarly, in TP reaction start pixels, the
negative peaks within the reaction start window are smaller in respect and follow one or more positive peaks,
Figure (4.2.1d).

(a) FP reaction start (b) TP reaction start

(c) FP reaction start within true reaction start win-
dow showing mean and standard deviation

(d) TP reaction start within true reaction start win-
dow showing mean and standard deviation

Figure 4.2.1: FP and TP reaction starts

20



Another interesting result is shown in Figure (4.2.2), where there was potential for a FP reaction start estimate,
due to the large and sudden increase in pixel intensity for over 1000 timesteps, yet the reaction start time was
accurately estimated.

Figure 4.2.2: TP reaction start

4.3 Concentration Prediction

To empirically evaluate the implemented GP regression model, different evaluation measures are used in this chap-
ter and the model is rigorously tested under different properties, such as alternating features and increasing the
input vector dimensionality. As was also briefly mentioned in Chapter 4, a key aspect of the GP model was using
LOOCV to evaluate. This was to make sure that data from the same experimental set were not cross contaminated.

We first show general plots of the Gaussian process regression. Figure (4.3.1a) shows a GP model trained
on “choline serum” using d150 as the rate of change for the input data where the training points, mean, and
prediction interval for the data are visible. The confidence interval for the mean is shown in Figure (4.3.1b).

(a) Gaussian process for choline serum (d150) (b) Confidence interval for choline serum (d150)

Figure 4.3.1: Gaussian process regression model

Using LOOCV, models were trained and tested using a single rate of change as the input feature, for all
rates of change, before finally using all rates of change, resulting in a 9-dimensional feature input space. Each
model is optimized 6 different times. This was decided based on the fact that the initial optimization iteration
value was set at 10, but all models reached ideal optimized hyper-parameters by the 5th or 6th iteration. For any
given dataset, there were 10 models trained and tested (9 different rates of change and all). The mean posterior
probability (MPP) was calculated for each model and averaged over all folds, shown in eq. (4.3.1), to measure
model performance. The standard deviation in error was also calculated. The raw results can be seen in Table
(4.1), where the standard deviation is in brackets. Metabolites have either a (B) or (S) in their name, indicating
if the experiment was done in buffer or serum, respectively. Also, as was previously mentioned in the evaluation
for the reaction start estimator, a false positive free dataset was created during evaluation. This dataset is la-
belled “TP” in the table and contains no falsely classified experimental pixels and accurate reaction start estimates.

1

M

∑
i

p(yi) (4.3.1)
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From the data in Table (4.1), we can plot the mean posterior probability at every rate of change feature input
to get an idea of the best rate of change value for predicting metabolite concentration. Figure (4.3.2a) shows the
mean posterior probability for “sarcosine buffer” and “sarcosine buffer TP”. We can see that there is a significant
difference between the standard dataset and the manually cleaned dataset. Based on the data, we also see that
the best rate of change for prediction is at d250 for “sarcosine buffer TP” and d300 for “sarcosine buffer”. For
all metabolites the best rate of change for prediction tends to occur after d150, which is a 15 second wait when
applying this to a real time environment such as a doctors office. Another noteworthy metabolite turns out to be
“choline serum”, Figure (4.3.2b), which has the highest mean posterior probability and peaks at d150. Choline
levels in serum are an emerging biomarker to detect early onset of troponin-positive cardiac ischemia [2]. We can
also see that all metabolites in serum produced better results with the GP model. Figure (4.3.3) shows this, where
each bar is the average mean posterior probabilities for each metabolite from Table (4.1). This may suggest that
testing for metabolite concentrations in serum can provide better results.

(a) sarcosine buffer & sarco-
sine buffer TP

(b) choline {buffer, serum} &
xanthine {buffer, serum}

(c) cholesterol {buffer, serum}
& glucose {buffer, serum}

Figure 4.3.2: Mean posterior probability plots

Metabolite d30 d50 d75 d125 d150

Sarcosine (B) TP 0.177 (.031) 0.194 (.044) 0.218 (.053) 0.255 (.049) 0.259 (.053)
Sarcosine (B) 0.106 (.013) 0.123 (.019) 0.127 (.021) 0.172 (.027) 0.182 (.031)
Glucose (B) 0.242 (.020) 0.284 (.040) 0.297 (.040) 0.300 (.037) 0.287 (.033)
Glucose (S) 0.275 (.074) 0.308 (.073) 0.335 (.084) 0.386 (.128) 0.387 (.123)
Choline (B) 0.203 (.021) 0.226 (.026) 0.261 (.036) 0.296 (.045) 0.299 (.048)
Choline (S) 0.313 (.053) 0.419 (.096) 0.497 (.140) 0.562 (.151) 0.609 (.148)
Xanthine (B) 0.212 (.020) 0.216 (.032) 0.241 (.035) 0.225 (.029) 0.229 (.021)
Xanthine (S) 0.317 (.076) 0.328 (.087) 0.336 (.079) 0.302 (.059) 0.296 (.055)
Cholesterol (B) 0.280 (.043) 0.298 (.057) 0.309 (.052) 0.339 (.068) 0.348 (.071)
Cholesterol (S) 0.341 (.000) 0.346 (.054) 0.348 (.068) 0.354 (.087) 0.361 (.087)

Metabolite d200 d250 d300 d500 {all}
Sarcosine (B) TP 0.291 (.068) 0.314 (.075) 0.308 (.081) 0.274 (.056) 0.393 (.180)
Sarcosine (B) 0.195 (.037) 0.213 (.041) 0.224 (.043) 0.195 (.035) 0.203 (.052)
Glucose (B) 0.263 (.026) 0.254 (.023) 0.244 (.023) 0.235 (.023) 0.309 (.069)
Glucose (S) 0.394 (.087) 0.370 (.118) 0.348 (.106) 0.308 (.055) 0.530 (.130)
Choline (B) 0.314 (.054) 0.319 (.057) 0.319 (.058) 0.308 (.055) 0.373 (.076)
Choline (S) 0.578 (.194) 0.548 (.196) 0.533 (.185) 0.479 (.112) 0.689 (.176)
Xanthine (B) 0.228 (.021) 0.222 (.020) 0.217 (.020) 0.216 (.028) 0.325 (.084)
Xanthine (S) 0.287 (.062) 0.287 (.066) 0.300 (.079) 0.371 (.099) 0.296 (.016)
Cholesterol (B) 0.357 (.077) 0.370 (.080) 0.382 (.083) 0.402 (.081) 0.330 (.081)
Cholesterol (S) 0.371 (.073) 0.370 (.064) 0.374 (.050) 0.386 (.041) 0.329 (.081)

Table 4.1: Mean posterior probability
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Figure 4.3.3: Serum vs Buffer

Giving all the rates of change as the feature input space produced substantially better results in almost all
the metabolites tested. A few, such as cholesterol and glucose in buffer had either no difference or produced worse
results. This suggests that for certain metabolites it is better to use more than 1 rate of change as an input feature,
while for specific others, a new approach may need to be taken; either further increasing the input features (more
rates of change), or only using specific rates of change which individually have higher probabilities. Models were
re-trained with increasing feature inputs, from 2 to 8, as we have already tested all metabolites on 1 and all, to find
the optimal amount of features needed to achieve higher performance. Figures (4.3.4a, b) both show the mean pos-
terior probability for the feature space dimensionality. We can see that for almost all metabolites, either in serum or
buffer, the higher the feature space, the higher the mean posterior probability is. Some peak before, such as with 7
for “xanthine serum” or 8 for “choline serum”, while others appear to get worse, for example, “cholesterol serum”.

(a) sarcosine {buffer, buffer TP}, choline {S, B} &
xanthine buffer

(b) xanthine serum, cholesterol {S, B} & glucose {S,
B}

Figure 4.3.4: Mean posterior probability over input feature spaces

In order to further evaluate the GP model it is important to look at the features themselves and how they
affect the models prediction. For this, we briefly looked at the mean posterior probability for choline and glucose
at two rates of change, d30 and d150, for specific concentrations. This gives us an idea which concentrations of
metabolites have a higher mean posterior probability value making them more reliable for regression and predic-
tion. Figure (4.3.5a, b) shows this. Both metabolites appear to have a normal distribution over the concentration
mean posterior probabilities, with the concentrations that have the highest mean posterior probability being nearer
the center, or the mode. For choline, it appears that a smaller concentration of 5.e−05 has a higher mean posterior
probability, whereas for glucose it is 0.0028.

As stated, the noise for the GP model is manually set to 1 at the start, and is later learnt and optimized with
L-BFGS along with the kernel hyper-parameters. To succinctly demonstrate the effects of changing this noise
parameter value manually, LOOCV was used to evaluate different set values. The Table (4.2), shows the results
of manually setting the noise parameter on a small set of different metabolites and rates of change.

23



(a) Choline in serum MPP at concentrations {2.5e-
05, 5.e-05, 0.0001, 0.0002, 0.0005}

(b) Glucose in serum MPP at concentrations {0.0007,
0.0014, 0.0028, 0.0056}

Figure 4.3.5: Mean posterior probability based on concentrations for d30 & d150

0.001 0.01 0.1

Choline (S) - d150 1.922 1.256 0.836
Glucose (S) - d150 3.797 0.188 0.642
Xanthine (S) - d150 2.251 0.325 0.389

Table 4.2: Mean posterior probabilities acquired with manual noise values

Also used as a performance measure was the mean squared error (MSE). However, when calculating the MSE,
the results were very small, and thus the normalized mean squared error (NMSE) was used instead. This is shown
in eq. (4.3.2). The results for this are shown in Table (4.3) and in Figure (4.3.5). From directly looking at the plots,
in terms of performance, it is relatively similar to the mean posterior probability, with “choline serum” performing
the best once again. What is interesting is that others, such as “glucose serum”, seem to be performing closer to
the levels of “choline serum” than when compared with the MPP results.

NMSE =
1

N

∑
i

(yi − µi)
2

ȳµ̄
, where (4.3.2)

ȳ =
1

N

∑
i

yi, µ̄ =
1

N

∑
i

µi (4.3.3)

(a) sarcosine buffer & sarco-
sine buffer TP

(b) choline {buffer, serum} &
xanthine {buffer, serum}

(c) cholesterol {buffer, serum}
& glucose {buffer, serum}

Figure 4.3.6: NMSE plots
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Metabolite d30 d50 d75 d125 d150 d200 d250 d300 d500

Sarcosine (B) TP 10.942 10.291 11.559 9.149 9.596 4.327 4.033 4.067 3.781
Sarcosine (B) 86.357 33.484 32.564 18.542 18.365 11.067 9.439 9.591 9.868
Glucose (B) 1.349 1.255 1.216 1.171 1.281 1.386 1.424 1.531 1.437
Glucose (S) 1.066 0.760 0.659 0.532 0.584 0.571 0.614 0.656 0.716
Choline (B) 2.602 2.563 1.922 10.317 3.816 1.857 2.002 2.129 2.348
Choline (S) 1.240 1.056 0.629 0.520 0.455 0.379 0.376 0.413 0.452
Xanthine (B) 1.793 6.776 2.588 2.637 2.427 2.312 2.434 2.328 2.182
Xanthine (S) 1.260 1.281 1.093 1.420 1.493 1.270 1.229 1.218 0.998
Cholesterol (B) 1.339 0.921 0.929 0.835 0.748 0.748 0.705 0.689 0.702
Cholesterol (S) 0.961 2.149 1.520 1.961 0.834 0.819 0.842 0.850 0.884

Table 4.3: NMSE
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Chapter 5

Conclusion

The primary motivation for undertaking this project was to be able to successfully predict a metabolite concentra-
tion in time series data using the rate of change and the data captured by the CMOS-based device. This work was
done with hopes that by using Gaussian processes alongside the CMOS-based device, doctors could test patients
metabolite concentrations in serum, buffer, or urine for fast and easy disease diagnosis.

In this dissertation we have successfully implemented two data pre-processing algorithms to: (1) classify ex-
perimental metabolite pixels from the CMOS-based device data; and (2) estimate the reaction start of a metabolite
in buffer and serum. We have also effectively created a Gaussian process regression model used for the prediction
of metabolite concentrations given a reaction rate of change. We have shown the ability to correctly classify
experimental metabolite pixels from the CMOS chip with a precision and F1 score of 0.96 and 0.94 respectively.
We also show that it is possible to estimate the reaction start of a metabolite in buffer, serum, and urine as true
positive 95.8% of the time. The Gaussian process models implemented demonstrate that metabolites have greater
prediction accuracy when in serum than when in buffer and that the rate of change used, as well as the amount of
input features (rates of change), can significantly affect the results. Furthermore, the outcomes from the Gaussian
process evaluation section demonstrate that the overall, best performing metabolite for concentration prediction
was choline in serum. Also, for the results demonstrated in Chapter 4, we can, for this project, state that in order
to create Gaussian process regression models that best suits the metabolite data, both the input features, rates of
change after the reaction start, and metabolite concentration need to be carefully looked at.

5.1 Future Work

While the results of this dissertation are successful, further work is needed to be done to advance the capabilities
and accuracy of predicting metabolite concentrations based on rate of change. This is so the CMOS-based device
can eventually become a self-contained medical device that doctors can use with patients to quickly and accurately
discover metabolite concentrations for disease diagnosis and discovery. We explore a handful of these improvements
in this section.

• Improve the estimated reaction start point - In the algorithm presented to estimate the reaction
start in real time, 4.2% of the evaluated results were false positives. In order to improve the algorithm and
increase its accuracy and decrease false positives, a solution worth considering is using a windowed median
instead of mean, and replacing the standard deviation with a more robust measure of scale. An example is
the median absolute deviation (MAD), which is the median of the absolute values of the differences between
the data values and the overall median of the data. Decreasing the amount of false positives in this stage
would result in far cleaner data for the GP as false positives create incorrect rate of change values which
affect the accuracy of the GP if trained on.

• Rate of change - Currently, the rate of change is calculated by simply finding the slope of the curve at
two points. This gives an approximate answer depending on how close the points are. In future, it may be
interesting to instead compute the derivative of the curve to give the rate of change at any point as this
will yield a more precise rate of change.

• GP feature selection & hyper-parameter optimization - From the evaluation chapter, we saw how
much results could change based on the feature input space, hyper-parameter and noise optimization, and
metabolite concentration used. Based on this information, future work involving carefully selecting and
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extracting all of these parameters and features may be crucial to obtaining a higher standard of Gaussian
process regression model, ultimately giving better predictions for metabolite concentrations.

• GP regression, classification, and more - Lastly, another interesting piece of future work may be to attempt
and transform this regression problem into one of classification or using deep learning and deep Gaussian
processes which can learn from complex data in a non-parametric fashion also and may provide greater
insight into the metabolite data.
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Appendix

Figure A.1: Birds-eye view of the CMOS chip
and 4 micro-wells

Figure A.2: Side view of the 4 micro-well areas

Figure A.3: Employed principle for metabolite
sensing schematic design

Figure A.4: CMOS chip and magnification of
pixels

Figure A.5: Photo diode signal from micro-wells as a surface plot

28



Bibliography

[1] D. Neil, M. Segler, L. Guasch, M. Ahmed, D. Plumbley, M. Sellwood, and N. Brown,
“Exploring deep recurrent models with reinforcement learning for molecule design,” 2018.

[2] S. B. Patil, D. S. Dheeman, M. A. Al-Rawhani, S. Velugotla, B. Nagy, B. C. Cheah, J. P.
Grant, C. Accarino, M. P. Barrett, and D. R. S. Cumming, “An integrated portable system
for single chip simultaneous measurement of multiple disease associated metabolites,” Elec-
tronics and Nanoscale Engineering, Wellcome Center for Molecular Parasitology, University
of Glasgow, 2018.

[3] V. M. Asiago, L. Z. Alvarado, N. Shanaia, G. N. Gowd, K. Owusu-Sarfo, R. A. Ballas, and
D. Rafter, “Early detection of recurrent breast cancer using metabolite profiling,” 2010.

[4] J. L. Griffin, H. Atherton, J. Shockcor, and L. Atzori, “Metabolomics as a tool for cardiac
research,” 2011.

[5] J. L. Griffin and J. P. Shockcor, “Metabolic profiles of cancer cells,” 2004.

[6] J. Sun, R. D. Beger, and L. K. Schnackenberg, “Metabolomics as a tool for personalizing
medicine,” 2012.

[7] N. Cernei, Z. Heger, J. Gumulec, O. Zitka, M. Masarik, P. Babula, T. Eckschlager, M.
Stiborova, R. Kizek, and V. Adam, “Sarcosine as a potential prostate cancer biomarker,”
2013.

[8] C. S. U. Noel Sturm, 2017.

[9] L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative analysis of urine
vapor and breath by gas-liquid partition chromatography,” 1971.

[10] C. Hu, M. A. Al-Rawhani, B. C. Cheah, S. Velugotla, and D. R. S. Cumming, “Hybrid
dual mode sensor for simultaneous detection of two serum metabolites,” 2017.

[11] D. Tominaga, K. Mori, and S. Aburatani, “Linear and nonlinear regression for combinato-
rial optimization problem of multiple transgenesis,” 2016.

[12] C. K. Williams, “Prediction with gaussian processes: From linear regression to linear pre-
diction and beyond,” 1997.

[13] J. C.-F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambi-
entum.
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